Test contains 15 questions, 2 marks each. No negative marks.
$\mathrm{N}_{\mathrm{A}}=6 \times 10^{23} \mathrm{~mol}^{-1} ; \quad \mathrm{Ar}: \mathrm{Na}-23 ; \mathrm{S}-32 ; \mathrm{O}-16 ; \mathrm{H}-1 ; \mathrm{Br}-80 ; \mathrm{K}-39$.

1. Mass number (A) of the element E is 32 and electron configuration of its E^{2-} ion is $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6}$. Which one of the following statements is correct?
1) Neutral atom of the element E contains 20 electrons
2) Neutral atom of the element E contains 18 protons
3) Element E is a noble gas
4) Neutral atom of the element E contains 16 neutrons
2. Given: $2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftarrows 2 \mathrm{SO}_{3}(\mathrm{~g})$

Initially, $1 \mathrm{~mol} \mathrm{SO}_{2}$ and $2 \mathrm{~mol} \mathrm{O}_{2}$ are placed in a 1 L vessel. After equilibrium has been established, $0.5 \mathrm{~mol} \mathrm{SO}_{3}$ is present in the vessel. The vessel contains:

1) $0.5 \mathrm{~mol} / \mathrm{L} \mathrm{SO}_{2}, 1 \mathrm{~mol} / \mathrm{L} \mathrm{O}_{2}$ and $0.5 \mathrm{~mol} / \mathrm{L} \mathrm{SO}_{3}$
2) $1 \mathrm{~mol} / \mathrm{L} \mathrm{O}_{2}$ and $0.5 \mathrm{~mol} / \mathrm{L} \mathrm{SO}_{3}$
3) $0.5 \mathrm{~mol} / \mathrm{L} \mathrm{SO}_{2}, 1.75 \mathrm{~mol} / \mathrm{L} \mathrm{O}_{2}$ and $0.5 \mathrm{~mol} / \mathrm{L} \mathrm{SO}_{3}$
4) $0.5 \mathrm{~mol} / \mathrm{L} \mathrm{SO}_{2}, 0.25 \mathrm{~mol} / \mathrm{L} \mathrm{O}_{2}$ and $0.5 \mathrm{~mol} / \mathrm{L} \mathrm{SO}_{3}$
3. Calculate the mass percent of $\mathrm{Na}_{2} \mathrm{SO}_{3}$ in a solution prepared by adding 10 g of $\mathrm{Na}_{2} \mathrm{SO}_{3} \cdot 7 \mathrm{H}_{2} \mathrm{O}$ and 10 g of $\mathrm{Na}_{2} \mathrm{SO}_{3}$ to 100 g of water.
1) 20
2) 16.7
3) 15
4) 12.5
4. In oxidation-reduction reaction between potassium bromide and potassium bromate $\left(\mathrm{KBrO}_{3}\right)$ in acidic solution $\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)$ produce elemental bromine, potassium sulfate and water. What volume of $2 \mathrm{~mol} / \mathrm{L}$ of reduction agent, in milliliters, is required to give 4.8 g bromine?
1) 25
2) 12.5
3) 15
4) 50
5. Which of the following has the lowest pH value?
1) Solution which in 1 L contains $10^{-2} \mathrm{~mol} \mathrm{H}^{+}$
2) Solution which in 1 L contains $6 \times 10^{10} \mathrm{OH}^{-}$
3) Solution of $\mathrm{H}_{2} \mathrm{SO}_{4}$ has a $\mathrm{pOH}=11.5$
4) Solution of $\mathrm{H}_{3} \mathrm{PO}_{4}$ has a $\mathrm{pH}=3$
6. Which one of the following sets is arranged in order of increasing pH of aqueous solutions of compounds?
1) $\mathrm{NaCl}, \mathrm{SO}_{2}, \mathrm{NaCH}_{3} \mathrm{COO}$
2) $\mathrm{HCl}, \mathrm{NaNO}_{3}, \mathrm{NH}_{4} \mathrm{Cl}$
3) $\mathrm{N}_{2} \mathrm{O}_{3}, \mathrm{NaNO}_{3}, \mathrm{Na}_{2} \mathrm{CO}_{3}$
4) $\mathrm{NaNO}_{2}, \mathrm{Na}_{2} \mathrm{SO}_{4}, \mathrm{AlCl}_{3}$
7. Which of the following reactions is not possible?
1) $2 \mathrm{Ag}+2 \mathrm{HNO}_{3} \rightarrow 2 \mathrm{AgNO}_{3}+\mathrm{H}_{2}$
2) $\mathrm{CaCO}_{3}+2 \mathrm{HNO}_{3} \rightarrow \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$
3) $\mathrm{CuO}+2 \mathrm{HCl} \rightarrow \mathrm{CuCl}_{2}+\mathrm{H}_{2} \mathrm{O}$
4) $\mathrm{ZnO}+2 \mathrm{NaOH}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Na}_{2}\left[\mathrm{Zn}(\mathrm{OH})_{4}\right]$
8. Tertiary alcohol can be prepared in the reaction of:
1) aldehyde and alkyl-magnesium-chloride following acidic hydrolysis
2) cyclohexanone and methyl-magnesium-chloride following acidic hydrolysis
3) reduction of propanone with LiAlH_{4} following acidic hydrolysis
4) reduction of ethyl-propanoate with LiAlH_{4} following acidic hydrolysis
9. Esterification is a reversible process. In order to increase the yield of the product as much as possible it is necessary:
1) to avoid the use of inorganic acid as the catalyst
2) to remove $\mathrm{H}_{2} \mathrm{O}$ from the reaction
3) to use reactants (carboxylic acid and alcohol) in 1:1 ratio
4) to add a reducing agent to the reaction mixture
10. 1,2,3,4-Tetrabromohexane is formed in the reaction of unknown starting compound and bromine. What is the structure of the unknown starting compound:
1) 1,5-hexadiene
2) 1,2-hexadiene
3) 1-hexyne
4) 1,3-hexadiene
11. The axial bonds in cyclohexane at positions 1 and 3 have the following relationship:
1) they are cis to each other
2) they are trans to each other
3) they do not have any defined relationship
4) their relationship can be either cis or trans
12. Which of the following statements is false:
1) substitution reactions are typical transformations of benzene
2) the length of $\mathrm{C}-\mathrm{C}$ bond in benzene is between the length of the single ($\mathrm{C}-\mathrm{C}$) bond and the double ($\mathrm{C}=\mathrm{C}$) bond
3) all atoms in the benzene ring are in the same plane
4) the most stable conformation of benzene is the chair conformation
13. The reaction of anilinium-chloride and potassium hydroxide affords:
1) phenol
2) potassium salt of phenol and ammonium-chloride
3) chlorobenzene and ammonia
4) aniline
14. Schiff base can be prepared in the reaction of:
1) histamine and ammonia
2) phenylalanine and formaldehyde
3) histidine and ammonia
4) reduction of cystine
15. Which functional groups participate in the formation of the D-ribose pyranose structure:
1) the alcohol group at position 4 and the aldehyde group
2) the alcohol group at position 2 and the alcohol group at position 5
3) the alcohol group at position 5 and the aldehyde group
4) the primary alcohol group and any of the secondary alcohol group
